Designing and Dosimetry of a Shield for Photon Fields of Radiation Therapy in Oral Cavity Cancer
نویسندگان
چکیده
The cancer of oral cavity is related to lesions of mucous membrane of tongue and gum that can be treated with radiation therapy. A lateral photon field can be used to treat this kind of tumor, which has a side-effect on normal tissue in the opposite side of the oral cavity. In this study the dosimetric effect of the various shields in oral cavity is evaluated. In this study, a special phantom similar to the structure of oral cavity with capability of film dosimetry was designed and constructed. The various shield slabs were made of five materials: Lead, Plexiglas, Acrylic resin, Silicon and Plaster. For irradiation, Cobalt 60 (60Co) and 6 MV photon beams were used. The film dosimetry before and after the shield was performed using GAFCHROMIC EBT2 films. The film before the shield measures the magnitude of backscattering radiation from the shield. The prescribed dose was 150 cGy. Results showed that 3 cm of the lead in both energies had the maximum absorption of radiation. The absorbed dose to opposite side of shield for 6 MV photon beams and 60Co were 21 and 32 cGy, respectively. The minimum attenuation on radiation was observed in silicon shield for which the dose of opposite side were 116 and 147 cGy for 6 MV and 60Co respectively. The maximum backscattered dose was measured 177 cGy and 219 cGy using 3 cm thickness of lead, which was quite considerable. The minimum backscattering where for acrylic resin 101 and 118 cGy for 6 MV and cobalt. In this study, it was concluded that the amount of backscattering for 3 cm Lead shield is quite considerable and increases the dose significantly. A composite layer of shield with 1-2 cm lead and 1 cm acrylic resin can have the protective effect and low backscattering radiation at the same time.
منابع مشابه
Comparison between Clinically Used Irregular Fields Shielded by Cerrobend and Standard Lead Blocks
Introduction: In radiation therapy centers across Iran, protection of normal tissues is usually accomplished by either Cerrobend or lead block shielding. In this study, the influence of these two shielding methods on central axis dose distribution of photon beam a Cobalt unit was investigated in clinical conditions. Materials and Methods: All measurements were performed for 60Co γ-ray beams an...
متن کاملIn vivo dosimetry of intraoral stent using TLD during external photon beam radiotherapy of oral cavity
Introduction: Individual oral stent is a mouth-opening device that used in head and neck cancer radiotherapy with the intention of decreasing radiation dose to health tissues. The aim of this study was to check the dose delivered to both the hard palate and tongue when patient uses the stent during radiotherapy of tongue carcinoma. Methods and materials<stron...
متن کاملSmall photon field dosimetry using EBT2 Gafchromic film and Monte Carlo simulation
Background: Small photon fields are increasingly used in modern radiotherapy especially in intensity modulated radiation therapy (IMRT) and stereotactic radiosurgery (SRS) treatments. Accurate beam profile and central axis depth doses measurements of such beams are complicated due to the electron disequilibrium. Hence the EBT2 (external beam therapy) Gafchromic film was used for dosimetry of sm...
متن کاملDetermination of an Effective Wedge Angle by Combination of Two Arbitrary Universal Wedge Fields in Radiation Therapy of Cancer Patients with Megavoltage Photon Beams.
Introduction: Wedge filters are commonly used in radiation oncology for eliminating hot spots and creating a uniform dose distribution in optimizing isodose curves in the target volume for clinical aspects. These are some limited standard physical wedges (15°, 30°, 45°, 60°), or creating an arbitrary wedge angle, like motorized wedge or dynamic wedge, ... The new formulation is...
متن کاملDosimetric Evaluation of Linac Photon Small Fields using MAGIC Polymer Gels
Introduction: In radiotherapy, methods of treatment planning are becoming increasingly more complicated. This requires verification of the doses delivered to increasingly smaller and more precise regions. Radiotherapy techniques are continuously employing smaller and smaller field sizes to deliver tighter radiation doses with higher therapeutic ratios, generating interest among researchers to p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2015